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Motivation
• Terahertz imaging  and spectroscopy has great potential for both healthcare & homeland security applications.

• However, development of terahertz heterodyne detection systems is impeded by the inability to characterize 
noise properties (& therefore the sensitivity) of such systems.

• Need noise-measurement ability to characterize the basic performance of any system that detects or processes 
weak terahertz signals.

• There is also a need for standard methods for characterizing basic individual components, such as quasi-optical 
adapters or windows.

• We’re designing and building a system for traceable noise-temperature measurements at terahertz frequencies.

1 THz = 1000 GHz = 1012 Hz → 300 μm
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Terahertz Radiometer for Traceable Noise-Temperature Measurements

• Front-end heterodyne detector 
integrated with MMIC LNA on same 
mixer block.

• Quasi-optical configuration.

• Block mounted in 4-7 K ambient 
temperature using mechanical 
cryocooler system for (relatively) quick 
access.

• LO is a commercial harmonic 
multiplier source capable of hundreds 
of μW.

• Both the LO and the incident terahertz 
signals are combined using thin mylar
beam splitter.
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Terahertz Local Oscillator (LO) Technologies

• Far Infrared (FIR) Lasers
• Pros: high power, stable, many lines.
• Cons: expensive, not tunable, size.

• Harmonic multipliers
• Pros: stable, highly tunable, size.
• Cons: low power, expensive, does not 

work at the higher terahertz range.

• Quantum Cascade lasers (QCL)
• Pros: potentially high power, somewhat 

tunable, size.
• Cons: not available, temperature 

stability, does not work at the lower 
terahertz range.

• Free electron lasers (FEL)
• Pros: potentially high power, tunable, 

simplicity.
• Cons: not available, size, x-ray 

emission.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 6

What is a Hot Electron Bolometric (HEB) mixer?

• HEBs are made of superconductors.
• Two types of HEBs:

• Phonon–Cooled (PHEB), NbN
• Diffusion-Cooled (DHEB), Nb

• Device volume as small as 2 μm by 0.5 μm 
by 3.5 nm (PHEB), and 0.1 μm by 0.08 
μm by 10 nm (DHEB).

PHEB: DHEB:
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Modeling of PHEB

• Gain bandwidth determined by the thermal time constant τ,                                  

• Noise bandwidth is about 2 times the gain bandwidth (8-10 GHz).
πτ2
1=GB

power heating coefficient:

escep τττ += −
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HEB Noise Mechanism
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Receiver Noise Temperatures at Terahertz Frequencies

• NbN PHEBs have demonstrated TR,DSB = 
500 K to 700 K in the Laboratory at 
frequencies from 500 GHz to 1.6 THz.

• Insensitive to bias conditions, saturation 
and direct detection effects.

• HEBs can absorb terahertz radiation up 
to the visible region (freq independent), 
well suited for spectroscopy.

• Lower noise than competing technologies 
(SIS mixers, SBD mixers).

• Quantum limited heterodyne 
measurement at the terahertz regime.

• Lower LO power (~104) than Schottky
detectors. Frequency [GHz]
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Quasi-Optical Design

Radiation pattern at 850 GHz

Reflection loss

• A combination of a dielectric lens and a monolithic twin-
slot antenna is used to couple the incoming radiation fields 
to the HEB device.

• Simulations of the reflection loss and the radiation pattern 
at different terahertz frequencies are performed. 

• Off-axis parabolic mirrors are used as the beam focusing 
elements because of their low attenuation and distortion.

28 μm=0.15λ0

THz signal, LO 106 μm

HEB device 2 μm by 0.5 μm

68 μm
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Mixer Block Integration

• MMIC low-noise amplifier and HEB mixer 
placed in the same plane reduces standing wave 
problem.

• All DC-bias and IF circuitry integrated in the 
same mixer block.

CPW
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MMIC Low-Noise Amplifier

• Very broadband 3-stage InP HEMT MMIC LNA.

• Noise temperature nearly independent of bias 
settings.

• Remarkable noise performance: measured noise 
temperature below 5.5 K from 1 GHz to 11 GHz, 
with a minimum of 2.3K±0.3 K at 7 GHz.

• Low Power consumption. 
Frequency [GHz]
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Developed  by Dr. Sander Weinreb’s group  at JPL/Caltech

J. Randa, E. Gerecht, D. Gu and R. Billinger,  IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1180-1189, March 2006.
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Blackbody Standards
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• Critical part of the system is the blackbody standards used to calibrate it.  These are the fundamental 
standards to which the measurements will be “traceable.”

• For the black body radiator, need to know the temperature and the emissivity in order to calculate the 
radiated power.

• Must know reflectance of coating, and whether it is specular or diffuse.
• Measurements of the specular component of reflectance for several materials of interest performed by 

Leonard Hansen and Simon Kaplan (NIST, Gaithersburg) are shown.
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Reflection of the Ribbed Rubber Sheet Material
Simon Kaplan (NIST, Gaithersburg)
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Cryogenic Setup

• Mechanical cryocooler with 1.5 W 
cooling power at 4 K.

• Quick access  for multiple 
measurements.

• Temperature control.
• Low-loss IF cables for S-parameter 

characterization.
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• Design for a terahertz radiometer for traceable noise-temperature 
measurements is presented.

• Demonstration of an HEB and MMIC LNA integration for the front-end of the 
radiometer. 

• Measurements of blackbody materials for terahertz frequencies are presented.

• Future development includes the completion of the integration of the 
radiometer and a careful analysis of the system.

Summary


